# Mapping policy guidance for an ecosystem service approach to shoreline protection via a geospatial shoreline management model

Marcia R. Berman\*, Tamia Rudnicky, Carl Hershner, Molly Roggero, Karen Duhring, Julie Bradshaw, and Pamela Mason

Center for Coastal Resources Management
Virginia Institute of Marine Science
College of William&Mary



#### **Our Role**

- Provide policy guidance to state policy-makers on tidal shoreline management;
- Provide science-based advice to state and local coastal managers who regulate activities on tidal shoreline through the permit process
  - Advice we provide is not static
  - Evolves as the science develops and lessons are learned WilliameがMary

Center for

Resources

# What is an ecosystem service approach to shoreline protection?

Erosion control options that do not sever natural processes between upland and aquatic areas



#### Maintain Cross-shore connections

Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/), University of Maryland Center for Environmental Science.



#### **Cumulative Impacts of Shoreline Hardening**

- Forest suppression & fragmentation
- Tidal wetland loss
- Sediment supply & transport altered
- Aquatic habitat decline
- Decrease fish biomass and diversity
- Reduced long term sustainability



#### Preferred Approach: "Living Shoreline"



#### **Living Shorelines Benefits**

- Abate erosion
- Improve marine habitat & spawning areas
- Improve riparian habitat
- Create or maintain cross-shore connections
- Affordable construction costs
- Net wetland gain
- Managed habitat retreat



## The Challenge

- Change the way people do business
- Build confidence in new approaches
- Gain legislative support



# Meeting the Challenge

 Outreach: regulators, policy makers, marine contractors, and property owners

Policy Guidance: policy to reflect a preference for

living shoreline

Implementation: tools



# **Shoreline Management Model**

- Geo-spatial logic model that returns the preferred approach for erosion control;
- Using available geo-spatial data;
- ArcGIS Model Builder



### Based upon an ICZM Decision Tree



- the decision tree provides the decision support behind the geospatial logic model;
- developed to improve the decision making capacity of shoreline managers;
  - pathways are determined by the user response to questions regarding specific shoreline characteristics

# **Decision Tree Logic Model**



# **Shoreline Management Model**

Collect and manipulate geo-spatial data from a variety of databases to reflect the parameters and their thresholds found in the decision tree



#### **Data inputs**

Beaches









#### **Model Output: Recommended Actions**



Living
Shoreline
Projects

# Shoreline Management Model Output – Hampton River





#### **Shoreline Management Model Output**



#### **Shoreline Management Model Output**



### **Next Steps**

- Refine the model to address special cases;
- Expand the model geographically;
- Output formats;
- Provide training

